“Fast Track” Analysis of Small Wind Turbine Blade Performance

Author:

Stępień MałgorzataORCID,Kulak MichałORCID,Jóźwik KrzysztofORCID

Abstract

Small wind turbines (SWTs) can be significantly sensitive to variances in the blade geometry shape when their operation in relatively low ranges of Reynolds numbers is considered. An SWT case study, where an existing wind turbine prototype was equipped with a redesigned blade set, to increase its aerodynamic efficiency, is presented. The geometry modification process was targeted at maximizing the turbine power coefficient in the presumed point of low Reynolds operation. The applied design and analysis methods included practical implementation of previously established “Fast Track” procedure for wind turbine development. A newly prepared blade geometry and a reference blade set were examined numerically and experimentally. Selected design and assessment processes were supposed to be low resource demanding, making them possibly highly applicable in renewable energy industry. Therefore, the numerical analysis of both geometries was based on BEM (blade element momentum theory) equations. The research was expanded by model validation in small-scale wind tunnel tests to provide detailed information on BEM data reliability in comparison to the results of the experiment. The small-scale analysis, performed in Reynolds numbers below 100,000, provided information sufficient for evaluation of the redesigned blade. Implementation of the geometry obtained throughout the proposed procedure increased the rotor’s maximum power coefficient by 10%.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference37 articles.

1. A review on small scale wind turbines

2. Wind Energy Basics: A Guide to Home- and Community-Scale Wind Energy Systems;Gipe,2009

3. Small wind in Europe—Past, present day and perspectives for the future;Baszczyński,2019

4. Low-Speed Wind Tunnel Testing;Barlow,1999

5. Theory of the Blockage Effects on Bluff Bodies and Stalled Wings in a Closed Wind Tunnel;Maskell,1965

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3