Current Trends and Innovations in Enhancing the Aerodynamic Performance of Small-Scale, Horizontal Axis Wind Turbines: A Review

Author:

Kassa Belayneh Y.12,Baheta Aklilu T.3,Beyene Asfaw4

Affiliation:

1. Addis Ababa Science and Technology University Department of Mechanical Engineering; Sustainable Energy Centre of Excellence, , Addis Ababa 16417 , Ethiopia ;

2. Arba Minch University Department of Automotive Engineering, , 21, Arba Minch 16417 , Ethiopia

3. Addis Ababa Science and Technology University Department of Mechanical Engineering; Sustainable Energy Centre of Excellence, , Addis Ababa 16417 , Ethiopia

4. San Diego State University Department of Mechanical Engineering, , San Diego, CA 92182-1323

Abstract

Abstract Wind energy has proven to be one of the most promising resources to meet the challenges of rising clean energy demand and mitigate environmental pollution. The global new installation of wind turbines in 2022 was 77.6 GW, bringing the total installed capacity to 906 GW, documenting an astounding 9% growth in just one year (Lee and Zhao, 2023, Global Wind Report, GWEC. Global Wind Energy Council). Sizeable research continues to focus on improving wind energy conversion, safety, and capacity. However, funding allocations and research have not matched this sustained market growth observed over the last few decades. This is particularly the case for small-size wind turbines. We define small-scale wind turbines as those with an output power of 40 kW or less that can nonetheless be interconnected to provide larger power output. Thus, the paper focuses on small-scale horizontal-axis wind turbines (HAWT) with emphasis on current technology trends including data gathering, aerodynamic performance analysis of airfoils and rotors, as well as computational approaches. The paper also highlights the challenges associated with small-scale HAWTs thereby conjecturing about future research directions on the subject. The literature review suggests that small-scale HAWT wind turbines are suitable for harnessing energy in communities with limited resources where grid-supplied power is out of reach. The power coefficient of these turbines ranges from 0.2 to 0.45 which shows that it could greatly benefit from research, built on targeting these modest performance scales by using efficient airfoils, mixed airfoils, optimizing the blade geometry, shrouding the wind turbine rotor, using maximum power tracking control, etc. This review paper is an attempt to prioritize and layout strategies toward evaluating and enhancing the aerodynamic performance of small-scale HAWTs.

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3