Ti6Al4V Alloy Remelting by Modulation Laser: Deep Penetration, High Compactness and Metallurgical Bonding with Matrix

Author:

Shen LongzhangORCID,Chen Yong,Zhu Hongmei,Lei Yuantao,Qiu Chanjun

Abstract

Titanium alloys are famous for their light weight, high strength, and heat- and corrosion-resistant properties. However, the excellent mechanical properties are closely related to its microstructure. Innovative machining operations are required for the welding, surface strengthening, and repairs to ensure the refining of the crystalline structure for improved strength requirements, enhanced mechanical properties, and integrating strength. By direct laser melting on the surface of Ti-6Al-4V alloy, the differences of molten pools under continuous and modulated laser mode were compared in the article. Under the same power, the heat influence zone of the laser pool could be reduced to 1/3 of that of the continuous laser. The deep molten pool could be obtained by a continuous laser by the action of high energy density. The tensile property changed a lot between different depths of melt penetration. A high-density, fine-grain molten pool could be obtained under the action of a high-frequency (20 kHz) modulation laser. The mechanical properties of the tensile sample between different depths of melt penetration, which contained the remelting zone, were close to the substrate. The research conclusions can provide technical support for the development of laser remelting processing technology.

Funder

Key Laboratory of Equipment Pre-research

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3