The Effect of Holding Time on Dissimilar Transient Liquid-Phase-Bonded Properties of Super-Ferritic Stainless Steel 446 to Martensitic Stainless Steel 410 Using a Nickel-Based Interlayer

Author:

Hafizi Majid,Kasiri-Asgarani Masoud,Naalchian Mojtaba,Bakhsheshi-Rad Hamid RezaORCID,Berto Filippo

Abstract

The dissimilar joining of martensitic and ferritic stainless steels have been developed that needs corrosion resistance and enhanced mechanical properties. In this study, the transient liquid-phase bonding of martensitic stainless steel 410 and super-ferritic stainless steel 446 was conducted with a nickel-based amorphous interlayer (BNi-2) at constant temperature (1050 °C) and increasing times of 1, 15, 30, 45, and 60 min. For characterization of the TLP-bonded samples, optical microscopy and scanning emission microscopy equipped with energy-dispersive X-ray spectroscopy were used. To investigate the mechanical properties of TLP-bonded samples, the shear strength test method was used. Finally, the X-ray diffraction method was used for microstructural investigation and phase identification. The microstructural study showed that the microstructure of base metals changed: the martensitic structure transited to tempered martensite, including ferrite + cementite colonies, and the delta phase in super-ferritic stainless steel dissolved in the matrix. During the transient liquid-phase bonding, the aggregation of boron due to its diffusion to base metals resulted in the precipitation of a secondary phase, including iron–chromium-rich borides with blocky and needle-like morphologies at the interface of the molten interlayer and base metals. On the other hand, the segregation of boron in the bonding zone resulted from a low solubility limit, and the distribution coefficient has induced some destructive and brittle phases, such as nickel-rich (Ni3B) and chromium-rich boride (CrB/Cr2B). By increasing the time, significant amounts of boron have been diffused to a base metal, and diffusion-induced isothermal solidification has happened, such that the isothermal solidification of the assembly has been completed under the 1050 °C/60 min condition. The distribution of the hardness profile is relatively uniform at the bonding zone after completing isothermal solidification, except the diffusion-affected zone, which has a higher hardness. The shear strength test showed that increasing the holding time was effective in achieving the strength near the base metals such that the maximum shear strength of about 472 MPa was achieved.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3