Physicochemical and Microstructural Characteristics of Sulfated Polysaccharide from Marine Microalga

Author:

Fimbres-Olivarria Diana1ORCID,Marquez-Escalante Jorge2ORCID,Martínez-Robinson Karla G.2,Miranda-Arizmendi Valeria2,Anda-Flores Yubia De2ORCID,Rascon-Chu Agustín2ORCID,Brown-Bojorquez Francisco3ORCID,Carvajal-Millan Elizabeth2ORCID

Affiliation:

1. Department of Scientific and Technological Investigations (DICTUS), University of Sonora, Blvd. Luis Donaldo Colosio, S/N, Hermosillo 83000, Sonora, Mexico

2. Research Center for Food and Development (CIAD, AC), Carretera Gustavo Enrique Astiazaran Rosas No. 46, Col. La Victoria, Hermosillo 83304, Sonora, Mexico

3. Department of Polymers, University of Sonora, Blvd. Luis Donaldo Colosio, S/N, Hermosillo 83000, Sonora, Mexico

Abstract

Marine algae are a valuable source of polysaccharides. However, the information available on sulfated polysaccharides from microalgae is limited. Navicula sp. is a microalga present in the Sea of Cortez, of which little is known regarding their polysaccharides’ properties. This study investigated the physicochemical and microstructural characteristics of Navicula sp. sulfated polysaccharide (NSP). The Fourier transform infrared spectrum of NSP showed distinctive bands (1225 and 820 cm−1, assigned to S–O and C–O–S stretching, respectively), confirming the molecular identity. NSP registered molecular weight, intrinsic viscosity, a radius of gyration, and a hydrodynamic radius of 1650 kDa, 197 mL/g, 61 nm, and 36 nm, respectively. The zeta potential, electrophoretic mobility, conductivity, and diffusion coefficient of the molecule were −5.8 mV, −0.45 µm cm/s V, 0.70 mS/cm, and 2.9 × 10−9 cm2/s, respectively. The characteristic ratio and persistence length calculated for NSP were 4.2 and 1.3 nm, suggesting a nonstiff polysaccharide chain conformation. The Mark–Houwink–Sakurada α and K constants were 0.5 and 1.67 × 10−1, respectively, indicating a molecular random coil structure. NSP scanning electron microscopy revealed a rough and porous surface. Knowing these polysaccharides’ physicochemical and microstructural characteristics can be the starting point for elucidating their structure–function relationship as a valuable tool in advanced biomaterial design.

Funder

CONAHCYT

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3