Abstract
There are emerging applications, like bridge structural health monitoring, continuous patient condition and outdoor aiding of the elderly and the disabled, where Internet of things (IoT) nodes are used with very limited accessibility and no connection to the main supply network. They may also be exposed to harsh environmental conditions. These are applications where power and available area constraints are of great concern. In this paper, we design a 1.1 V low dropout (LDO) linear regulator in 40 nm technology to be embedded in IoT nodes. To address these constraints, we used state-of-the-art, variability-aware resistor-less sub-threshold biased CMOS-only ultra low power consumption configurations having low active area. The proposed LDO is internally compensated with embedded 18 pF Miller and 10 pF load capacitances. It can supply 1 mA maximum load current with 0.8 uA quiescent current. The dropout voltage of the regulator is 200 mV with minimum input voltage of 1.3 V. The efficiency of the regulator is 84%, which is about 99% of the maximum achievable efficiency for a 200 mV dropout voltage. The whole circuit, consisting of the embedded voltage reference and the Miller and load capacitances, takes less than 0.007 mm2 of the die size with 1 μW power consumption.
Funder
Ministry of science and innovation of Spain- Neuroware project
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献