Artificial Intelligence Applications for Increasing Resource Efficiency in Manufacturing Companies—A Comprehensive Review

Author:

Waltersmann LaraORCID,Kiemel SteffenORCID,Stuhlsatz Julian,Sauer Alexander,Miehe RobertORCID

Abstract

Sustainability improvements in industrial production are essential for tackling climate change and the resulting ecological crisis. In this context, resource efficiency can directly lead to significant advancements in the ecological performance of manufacturing companies. The application of Artificial Intelligence (AI) also plays an increasingly important role. However, the potential influence of AI applications on resource efficiency has not been investigated. Against this background, this article provides an overview of the current AI applications and how they affect resource efficiency. In line with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, this paper identifies, categorizes, and analyzes seventy papers with a focus on AI tasks, AI methods, business units, and their influence on resource efficiency. Only a minority of papers was found to address resource efficiency as an explicit objective. Subsequently, typical use cases of the identified AI applications are described with a focus on predictive maintenance, production planning, fault detection and predictive quality, as well as the increase in energy efficiency. In general, more research is needed that explicitly considers sustainability in the development and use phase of AI solutions, including Green AI. This paper contributes to research in this field by systematically examining papers and revealing research deficits. Additionally, practitioners are offered the first indications of AI applications increasing resource efficiency.

Funder

VDI Zentrum für Ressourceneffizienz GmbH

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference128 articles.

1. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II, and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,2014

2. Sustainable production and the role of digital twins–Basic reflections and perspectives

3. Windenergie: Zuverlässige Integration in die Energieversorgung;Jarass,2009

4. Energieeffizienz in Deutschland—Eine Metastudie: Analyse und Empfehlungen,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3