Changes in the Risk of Extreme Climate Events over East Asia at Different Global Warming Levels

Author:

Zhang JintaoORCID,Wang FangORCID

Abstract

Limiting the global temperature increase to a level that would prevent “dangerous anthropogenic interference with the climate system” is the focus of intergovernmental climate negotiations, and the cost-benefit analysis to determine this level requires an understanding of how the risk associated with climate extremes varies with different warming levels. We examine daily extreme temperature and precipitation variances with continuous global warming using a non-stationary extreme value statistical model based on the Coupled Model Intercomparison Project Phase 5 (CMIP5). Our results show the probability of extreme warm and heavy precipitation events over East Asia (EA) will increase, while that of cold extremes over EA will decrease as global warming increases. A present-day 1-in-20-year heavy precipitation extreme in EA is projected to increase to 1.3, 1.6, 2.5, and 3.4 times more frequently of the current climatology, at the global mean warming levels of 1.5 °C, 2 °C, 3 °C, and 4 °C above the preindustrial era, respectively. Moreover, the relative changes in probability are larger for rarer events. These results contribute to an improved understanding of the future risk associated with climate extremes, which helps scientists create mitigation measures for global warming and facilitates policy-making.

Funder

the National Key Research and Development Program of China

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference42 articles.

1. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,2014

2. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change,2012

3. Turn down the Heat: Climate Extremes, Regional Impacts, and the Case for Resilience;Bank,2012

4. Global observed changes in daily climate extremes of temperature and precipitation

5. Observed coherent changes in climatic extremes during the second half of the twentieth century

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3