A Data-Driven Probabilistic Rainfall-Inundation Model for Flash-Flood Warnings

Author:

Pan Tsung-Yi,Lin Hsuan-Tien,Liao Hao-Yu

Abstract

Owing to their short duration and high intensity, flash floods are among the most devastating natural disasters in metropolises. The existing warning tools—flood potential maps and two-dimensional numerical models—are disadvantaged by time-consuming computation and complex model calibration. This study develops a data-driven, probabilistic rainfall-inundation model for flash-flood warnings. Applying a modified support vector machine (SVM) to limited flood information, the model provides probabilistic outputs, which are superior to the Boolean functions of the traditional rainfall-flood threshold method. The probabilistic SVM-based model is based on a data preprocessing framework that identifies the expected durations of hazardous rainfalls via rainfall pattern analysis, ensuring satisfactory training data, and optimal rainfall thresholds for validating the input/output data. The proposed model was implemented in 12 flash-flooded districts of the Xindian River. It was found that (1) hydrological rainfall pattern analysis improves the hazardous event identification (used for configuring the input layer of the SVM); (2) brief hazardous events are more critical than longer-lasting events; and (3) the SVM model exports the probability of flash flooding 1 to 3 h in advance.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3