Modeling rainfall-induced 2D inundation simulation based on the ANN-derived models with precipitation and water-level measurements at roadside IoT sensors

Author:

Wu Shiang-Jen

Abstract

AbstractThis study aims to develop a smart model for carrying out two-dimensional (2D) inundation simulation by estimating the gridded inundation depths via the ANN-derived models (ANN_GA-SA_MTF), named SM_EID_2D model. Within the SM_EID_2D model, the rainfall-induced inundation depths at the IoT sensors (i.e., IOT-based grids) are first estimated to be then used in the estimation of inundation depths at the ungauged grids (VIOT-based grids), the resulting flood extents and spatial distribution of inundation of what could be achieved. To facilitate the reliability of the proposed SM_EID_2D model in the 2D inundation simulation, a considerable number of rainfall-induced flood events are generated as the training datasets by coupling the hydrodynamic numerical model (SOBEK) with the simulated gridded rainstorms. To proceed with the model validation and application, the Miaoli City of North Taiwan is selected as the study area, and the associated hydrological and geographical data are adopted in the generation of the training datasets. The results from the model validation indicate that the proposed SM_EID_2D model could provide the gridded inundation-depth hydrographs with a low bias (about 0.02 m) and a high fitness to the validated data (nearly 0.7); also, the spatial distribution of inundated and non-inundated grids as well as the induced flooding extent provided could be well emulated by the proposed SM_EID_2D model under acceptable reliability (0.7). The proposed SM_EID_2D model is also advantageous for the 2D inundation simulation in the real-time delineated subbasins by assembling the emulated inundation depths at the specific grids.

Funder

National United University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3