Comparison between Post-Fire Analysis and Pre-Fire Risk Assessment According to Various Geospatial Data

Author:

Güngöroğlu Cumhur1ORCID,İsmailoğlu İrem2,Kapukaya Bekir2ORCID,Özcan Orkan3ORCID,Yanalak Mustafa4ORCID,Musaoğlu Nebiye4ORCID

Affiliation:

1. Faculty of Forestry, Karabük University, Karabük 78050, Türkiye

2. Center for Satellite Communications and Remote Sensing, Istanbul Technical University, Istanbul 34469, Türkiye

3. Eurasia Institute of Earth Sciences, Istanbul Technical University, İstanbul 34469, Türkiye

4. Department of Geomatics Engineering, Istanbul Technical University, İstanbul 34469, Türkiye

Abstract

Wildfires in forest ecosystems exert substantial ecological, economic, and social impacts. The effectiveness of fire management hinges on precise pre-fire risk assessments to inform mitigation efforts. This study aimed to investigate the relationship between predictions from pre-fire risk assessments and outcomes observed through post-fire burn severity analyses. In this study, forest fire risk was assessed through the Fuzzy Analytical Hierarchy Process (FAHP), in which fire-oriented factors were used as input. The degree of burn was determined by the Random Forest method using 11,519 training points and 400 test points on Sentinel-2 satellite images under three different classes. According to the results obtained from 266 selected test points located within the forest, all primary factors put forth increased high burn severity. Climate, in particular, emerged as the most significant factor, accounting for 52% of the overall impact. However, in cases of high fire severity, climate proved to be the most effective risk factor, accounting for 67%. This was followed by topography with 50% accuracy at a high fire intensity. In the risk assessment based on the FAHP method, climate was assigned the highest weight value among the other factors (32.2%), followed by topography (27%). To evaluate the results more comprehensively, both visually and statistically, two regions with different stand canopy characteristics were selected within the study area. While high burn severity had the highest accuracy in the Case 1 area, moderate burn severity had the highest in the Case 2 area. During the days of the fire, the direction of spreading was obtained from the MODIS images. In this way, the fire severity was also interpreted depending on the direction of fire progression. Through an analysis of various case studies and literature, this research underlines both the inherent strengths and limitations of predicting forest fire behavior-based pre-fire risk assessments. Furthermore, it emphasizes the necessity of continuous improvement to increase the success of forest fire management.

Funder

Istanbul Technical University (ITU) Scientific Projects Office

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3