Affiliation:
1. Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska St. 159c, 02-787 Warsaw, Poland
Abstract
The main goal of this research was to model and optimize the extraction process of bioactive compounds from spent coffee grounds (SCG). This study utilized response surface methodology (RSM) to determine the significance of the effects of independently tested extraction process conditions and their interactions. The quality of the SCG extracts was evaluated by performing the following determinations: total polyphenols content (TPC), ABTS and FRAP assays, browning index (BI), and caffeine and chlorogenic acids contents by high-performance liquid chromatography. The resultant optimal extraction conditions, which maximized recovery of antioxidant bioactive compounds, were 65% hydroethanolic solution (v/v) in a solvent–matrix ratio of 51 mL/g CS, followed by ultrasound-assisted extraction carried out for 30 min at 60 °C. The SCG extract obtained by this extraction variant had values for TPC, ABTS, FRAP and BI of approximately 38 mg GAE (gallic acid equivalent) per g d.m. SCG, 73 mg Trolox/g d.m. SCG, 81 µmol Fe (II)/g d.m. SCG, and 0.22, respectively. The sample was also characterized by a high content of caffeine (5 mg/g d.m. SCG) and chlorogenic acids (8 mg/g d.m. SCG). Based on the obtained results, SCG may be recognized as a coffee by-product that has abundant components with antioxidant activity and broad possible applications in agri-food processing fields.
Funder
Ministry of Education and Science
Institute of Food Sciences of Warsaw University of Life Sciences
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science