Research on the Vehicle Steering and Braking Stability Region

Author:

Wang Xianbin1,Li Weifeng1,Zhang Fugang2,Li Zexuan1,Bao Wenlong1

Affiliation:

1. School of Civil Engineering and Transportation, Northeast Forestry University, Harbin 150040, China

2. Commercial Vehicle Development Institute of China FAW Jiefang Automobile Co., Ltd., Changchun 130062, China

Abstract

Solving the stability region in the plane motion of vehicles has become a hot research topic in vehicle handling stability under extreme conditions, but there is still a lack of research on the stability region under steering and braking conditions. In this paper, a five-degree-of-freedom (5DOF) nonlinear dynamic model of a vehicle with braking torque introduced is established, and the model is transformed into an equivalent system by using the D’Alembert principle. Then, the equilibrium points of the equivalent system are solved by using an improved hybrid algorithm combining the genetic algorithm (GA) and sequential quadratic programming (SQP) method. According to the bifurcation characteristics of the equilibrium points, the boundary of the stability region at the given initial longitudinal velocity is determined, and the three-dimensional stability region is fitted. Finally, the stability region of the equivalent system and the original system are analyzed by the energy dissipation method, and the stability region determined by the equilibrium point bifurcation method is verified by simulation. The results show that as the braking torque increases, the number of equilibrium points increase to three from one, the equilibrium bifurcation method proposed in this paper can effectively solve the stability region of the equivalent system, and the solution results are consistent with the original system stability region. When the limited braking torque is 500 N·m and the initial longitudinal velocity increases from 30 m/s to 50 m/s, the absolute value of the front wheel steering angle at the boundary point changes from less than 0.02 rad to more than 0.02 rad.

Funder

Key R&D Plan of Heilongjiang Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference32 articles.

1. Dissipation of energy analysis approach for vehicle plane motion stability;Meng;Veh. Syst. Dyn.,2021

2. Analysis on vehicle stability in critical cornering using phase-plane method;Inagaki;Jsae Rev.,1995

3. Bifurcation in vehicle dynamics and robust front wheel steering control;Ono;IEEE Trans. Control Syst. Technol.,1998

4. Elucidating vehicle lateral dynamics using a bifurcation analysis;Liaw;IEEE Trans. Intell. Transp. Syst.,2007

5. Nonlinear dynamics and stability analysis of vehicle plane motions;Shen;Veh. Syst. Dyn.,2007

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3