Vehicle Lateral Control Based on Dynamic Boundary of Phase Plane Based on Tire Characteristics

Author:

Li Jing1,Feng Baidong1,Liang Zhipeng1,Luo Jin1

Affiliation:

1. School of Vehicle and Energy, Yanshan University, Qinhuangdao 066000, China

Abstract

Lateral control is an essential safety control technology for autonomous vehicles, but the effectiveness of lateral control technology relies heavily on the precision of vehicle motion state judgements. In order to achieve accurate judgements of the vehicle motion state and to improve the control effectiveness of vehicle maneuverability and the stability controller, this paper starts with an analysis of phase plane stability. A simulation analysis is conducted to investigate the effect of the vehicle steering angle of the front wheels, the longitudinal velocity, and the tire–road adhesion coefficient on the boundary of the stability area. The stable area of the phase plane was partitioned using the proposed novel quadrilateral method, and we established a stability area regression model using machine learning methods. We analyzed the inherent connection between the lateral tire forces and the principles of vehicle maneuverability and stability control, indirectly combining the characteristics of tire forces with vehicle maneuverability and stability control. An allocation algorithm for maneuverability and stability control was designed. A co-simulation indicates that the vehicle stability controller not only accurately assesses the motion state of the vehicle but also demonstrates a considerably better performance in maneuverability and stability control compared to a controller using the traditional partitioning method of stable regions. The suggested allocation method enhances vehicle maneuverability and stability by enabling a seamless transition between the two and improving the effectiveness of stability control.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3