Analysis of Preprocessing Techniques for Missing Data in the Prediction of Sunflower Yield in Response to the Effects of Climate Change

Author:

Călin Alina Delia1ORCID,Coroiu Adriana Mihaela1ORCID,Mureşan Horea Bogdan1

Affiliation:

1. Department of Computer Science, Babeş Bolyai University, Mihail Kogalniceanu 1, 400084 Cluj-Napoca, Romania

Abstract

Machine learning is often used to predict crop yield based on the sowing date and weather parameters in non-irrigated crops. In the context of climate change, regression algorithms can help identify correlations and plan agricultural activities to maximise production. In the case of sunflower crops, we identified datasets that are not very large and have many missing values, generating a low-performance regression model. In this paper, our aim is to study and compare several approaches for missing-value imputation in order to improve our regression model. In our experiments, we compare nine imputation methods, using mean values, similar values, interpolation (linear, spline, pad), and prediction (linear regression, random forest, extreme gradient boosting regressor, and histogram gradient boosting regression). We also employ four unsupervised outlier removal algorithms and their influence on the regression model: isolation forest, minimum covariance determinant, local outlier factor and OneClass-SVM. After preprocessing, the obtained datasets are used to build regression models using the extreme gradient boosting regressor and histogram gradient boosting regression, and their performance is compared. The evaluation of the models shows an increased R2 from 0.723 when removing instances with missing data, to 0.938 for imputation using Random Forest prediction and OneClass-SVM-based outlier removal.

Funder

European Union

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference38 articles.

1. Impact of climate change on agriculture production and its sustainable solutions;Arora;Environ. Sustain.,2019

2. Wangchen, T., and Dorji, T. (2022). Climate Change Adaptations in Dryland Agriculture in Semi-Arid Areas, Springer Nature.

3. Tui, S.H.K., Sisito, G., Moyo, E.N., Dube, T., Valdivia, R.O., Madajewicz, M., Descheemaeker, K., and Ruane, A.C. (2022). Climate Change Adaptations in Dryland Agriculture in Semi-Arid Areas, Springer Nature.

4. Rawal, D.S. (2022). Climate Change Adaptations in Dryland Agriculture in Semi-Arid Areas, Springer Nature.

5. Advancing agricultural research using machine learning algorithms;Mourtzinis;Sci. Rep.,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3