Affiliation:
1. School of Software Engineering, Xi’an Jiaotong University, Xi’an 710049, China
2. China National Heavy Machinery Research Institute Co., Ltd., Xi’an 710016, China
Abstract
Anomaly detection of liquid levels in molds is an important task in continuous casting. Data that consists of a series of liquid levels in mold during a continuous casting process can be viewed as a time series, on which Time Series Anomaly Detection (TSAD) methods can be applied. However, the abnormal and normal data in the liquid data in the mold sequence share similar features. And due to manual control limitations, the anomaly sequence in liquid level in mold data lasts longer. Therefore, using existing TSAD methods based on AutoEncoders (AEs) often results in high false positive rates. In this paper, a novel framework is proposed for anomaly detection of liquid level in mold by using unsupervised deep-learning-based TSAD. The framework decomposes a time series into normal and error sequences. A forecasting network reconstructs the normal sequence to solve the first issue, which allows the proposed method to consider the context. An error extraction network generates errors from the original sequence to solve the second issue. It removes anomalies from the original sequence during training to prevent anomaly pollution and allows the forecasting network’s training to be free from anomaly pollution. A new dynamic threshold method is proposed to identify anomalies. The proposed method is evaluated on the actual casting dataset by comparing it with baseline methods. The experiment results indicate that the proposed framework outperforms some of the best anomaly detection methods in terms of accuracy, precision, and F1 score.
Funder
Key Research and Development Project of Shaanxi Province
Independent Science and Technology Research and Development Project of SINOMACH-HE
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science