1. Ahmad, I., Kano, M., Hasebe, S., Kitada, H., & Murata, N. (2013). Design of inner and outer gray-box models to predict molten steel temperature in Tundish. IFAC Proceedings Volumes. https://doi.org/10.3182/20131218-3-IN-2045.00089.
2. Alpaydin, E. (2010). Introduction to machine learning (2nd ed.). London, UK: The MIT Press.
3. Annapureddy, R. R., Bhattacharya, A. K., & Reddy, M,.N. (2018). Adaptive critic design for extreme learning machines applied to noisy and drifting industrial processes. In 2018 IEEE symposium series on computational intelligence (SSCI) (pp. 327–334). IEEE: Bangalore, India.
4. Arnu, D., et al. (2017). A reference architecture for quality improvement in steel production. In P. Haber, T. Lampoltshammer, & M. Mayr (Eds.), Data Science - Analytics and Applications (pp. 85–90). Wiesbaden: Springer Fachmedien Wiesbaden.
5. Bartos, R., et al. (2007). Stahlfibel. Düsseldorf, Germany: Verlag Stahleisen GmbH.