Accelerating Optimal Control Strategy Generation for HVAC Systems Using a Scenario Reduction Method: A Case Study

Author:

Tian Zhe12,Ye Chuang1,Zhu Jie1,Niu Jide12ORCID,Lu Yakai3

Affiliation:

1. School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China

2. Tianjin Key Laboratory of Building Environment and Energy, Tianjin 300072, China

3. School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China

Abstract

Learning an optimal control strategy from the optimized operating dataset is a feasible way to improve the operational efficiency of HVAC systems. The operation dataset is the key to ensuring the global optimality and universality of the operation strategy. Currently, the model-based method is commonly used to generate datasets that cover all operating scenarios throughout the cooling season. However, thousands of iterative optimizations of the model also lead to high computational costs. Therefore, this paper proposed a scenario reduction method in which similar operating scenarios were grouped into clusters to significantly reduce the number of optimization calculations. First, k-means clustering (with dry-bulb temperature, wet-bulb temperature, and cooling load as features) was used to select typical scenarios from operating scenarios for the entire cooling season. Second, the model-based optimization was performed with the typical scenarios to generate the optimal operating dataset. Taking a railway station in Beijing as a case study, the results show that the optimization time for the typical scenarios was only 1.4 days, which was reduced by 93.1% compared with the 20.6 days required to optimize the complete cooling season scenario. The optimal control rules were extracted, respectively, from the above datasets generated under the two schemes, and the results show that the deviation of energy saving rate was only 0.45%. This study shows that the scenario reduction method can significantly speed up the generation of the optimal control strategy dataset while ensuring the energy-saving effect.

Funder

The Key R&D Program of Tianjin

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference43 articles.

1. United Nations Environment Programme (2021). 2021 Global Status Report for Buildings and Construction: Towards a Zero-Emission, Efficient and Resilient Buildings and Construction Sector, United Nations Environment Programme.

2. A review on buildings energy consumption information;Ortiz;Energy Build.,2008

3. (2019). 2019 Global Status Report for Buildings and Construction, United Nations Environment Programme.

4. Supervisory and Optimal Control of Building HVAC Systems: A Review;Wang;HVACR Res.,2008

5. All you need to know about model predictive control for buildings;Arroyo;Annu. Rev. Control,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3