Research on Online Temperature Prediction Method for Office Building Interiors Based on Data Mining

Author:

Tang Jiale12,Liu Kuixing2,You Weijie2,Zhang Xinyu13,Zhang Tuomi4

Affiliation:

1. State Key Laboratory of Building Safety and Built Environment, Beijing 100013, China

2. School of Architecture, Tianjin University, Tianjin 300072, China

3. China Academy of Building Research, Beijing 100013, China

4. Tianjin International Engineering Institute, Tianjin University, Tianjin 300072, China

Abstract

Indoor environmental parameters are closely related to the energy consumption and indoor thermal comfort of office buildings. Predicting these parameters, especially indoor temperature, can contribute to the management of energy consumption and thermal comfort levels in office buildings. An accurate indoor temperature prediction model is the basis for implementing this process. To this end, this paper first discusses the input and output parameters of the model, and then it compares the prediction effects of mainstream prediction model algorithms based on data mining under the same data conditions. The superiority of the XGBoost integrated learning algorithm is verified, and a further XGBoost-based indoor temperature online prediction method is designed. The effectiveness of the method is validated using actual data from a commercial office building in Haidian District, Beijing. Finally, optimization methods for the prediction method are discussed with regard to the scheduler mechanism proposed in this paper. Overall, this work can assist building operators in optimizing HVAC equipment running strategies, thus improving the indoor thermal comfort and energy efficiency of the building.

Funder

Opening Funds of State Key Laboratory of Building Safety and Built Environment & National Engineering Research Center of Building Technology

Basic Research Program Projects in Qinghai Province, China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3