A Sustainable Forage-Grass-Power Fuel Cell Solution for Edge-Computing Wireless Sensing Processing in Agriculture 4.0 Applications

Author:

Estrada-López Johan J.1ORCID,Vázquez-Castillo Javier2ORCID,Castillo-Atoche Andrea3ORCID,Osorio-de-la-Rosa Edith4ORCID,Heredia-Lozano Julio5ORCID,Castillo-Atoche Alejandro5ORCID

Affiliation:

1. Faculty of Mathematics, Autonomous University of Yucatan, Mérida 97000, Mexico

2. Informatics and Networking Department, Universidad Autónoma del Estado de Quintana Roo, Chetumal 77019, Mexico

3. Chemistry and Biochemistry Department, Tecnológico Nacional de México/Instituto Tecnológico de Mérida, Mérida 97118, Mexico

4. Informatics and Networking Department, CONACYT-Universidad Autónoma del Estado de Quintana Roo, Chetumal 77019, Mexico

5. Mechatronics Department, Autonomous University of Yucatan, Mérida 97000, Mexico

Abstract

Intelligent sensing systems based on the edge-computing paradigm are essential for the implementation of Internet of Things (IoT) and Agriculture 4.0 applications. The development of edge-computing wireless sensing systems is required to improve the sensor’s accuracy in soil and data interpretation. Therefore, measuring and processing data at the edge, rather than sending it back to a data center or the cloud, is still an important issue in wireless sensor networks (WSNs). The challenge under this paradigm is to achieve a sustainable operation of the wireless sensing system powered with alternative renewable energy sources, such as plant microbial fuel cells (PMFCs). Consequently, the motivation of this study is to develop a sustainable forage-grass-power fuel cell solution to power an IoT Long-Range (LoRa) network for soil monitoring. The stenotaphrum secundatum grass plant is used as a microbial fuel cell proof of concept, implemented in a 0.015 m3-chamber with carbon plates as electrodes. The BQ25570 integrated circuit is employed to harvest the energy in a 4 F supercapacitor, which achieves a maximum generation capacity of 1.8 mW. The low-cost pH SEN0169 and the SHT10 temperature and humidity sensors are deployed to analyze the soil parameters. Following the edge-computing paradigm, the inverse problem methodology fused with a system identification solution is conducted, correcting the sensor errors due to non-linear hysteresis responses. An energy power management strategy is also programmed in the MSP430FR5994 microcontroller unit, achieving average power consumption of 1.51 mW, ∼19% less than the energy generated by the forage-grass-power fuel cell. Experimental results also demonstrate the energy sustainability capacity achieving a total of 18 consecutive transmissions with the LoRa network without the system’s shutting down.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3