Microstructural Control and Properties Optimization of Microalloyed Pipeline Steel

Author:

Soliman Mohamed

Abstract

A series of physical simulations, with parameters resembling those of industrial rolling, were applied using a thermo-mechanical simulator on microalloyed bainitic pipeline steel to study the influence of varying the processing parameters on its microstructure evolution and mechanical properties. In this study, the austenitization temperature and roughing parameters were kept unchanged, whereas the parameters of the finishing stage were varied. The developed microstructures were studied using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It is illustrated that selecting the appropriate cooling strategy (without altering the deformation schedule) can produce an optimized microstructure that breaks through the strength–ductility trade-off. Increasing the cooling rate after the finishing stage from 10 K·s−1 to 20 K·s−1 activated the microstructure refinement by effective nucleation of acicular ferrite and formation of finer and more dispersed martensite/austenite phase. This resulted in a remarkable enhancement in the ductility without compensating the strength. Furthermore, a pronounced strength increase with a slight ductility decrease was observed when selecting the appropriate coiling temperature, which is attributed to the copious precipitation associated with locating the coiling temperature near the peak temperature of precipitation. On the other hand, it was observed that the coiling temperature is the predominant parameter affecting the strain aging potential of the studied steel. Higher strain aging potentials were perceived in the samples with lower yield strength and vice versa, so that the differences in yield strength after thermo-mechanical treatments evened out after strain aging.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference42 articles.

1. Flagship Reporthttps://www.iea.org/reports/world-energy-outlook-2019

2. The Present and the Future of Line Pipe Steels for Petroleum Industry

3. Welding Principles and Applications;Jeffus,2012

4. Continuous cooling transformation of undeformed and deformed low carbon pipeline steels

5. Thermomechanical Processing of High Strength Low-Alloy Steels;Tamura,1988

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3