Study on microstructure evolution and mechanical properties of high-strength low-alloy steel welds realized by flash butt welding thermomechanical simulation

Author:

Wang Jun,Lu Yao,Han Jian,Qi Jianjun,Sun Li,Jiang Zhengyi,Ma Cheng,Linton Valerie

Abstract

Abstract Defects would occur in the weld joint of the wheel rims during the post-flash butt welding (FBW) process suffering from poor plasticity, which will deteriorate the quality and lifecycle of finish products. Therefore, the FBW process of the 440CL high-strength-low-alloy (HSLA) steel was physically simulated and the influence of flash parameters on FBW joints was systematically evaluated in this study. The results showed that the width of heat affected zone increased with accumulated flash allowance (δf) while declined with accelerated flash speed (vf). The recrystallization level would be intensified with increased δf. Meanwhile, the acceleration in vf populated the WZ with a more homogeneous microstructure, higher recrystallization degree and lower dislocation density. The hardness in WZ slightly reduced (202 → 195 HV) as increased δf but obviously dropped (192 → 177 HV) as increased vf. All tensile samples were fractured at the BM location and the tensile properties of FBW joints exhibit a good match with those of BM, with a slight increase in strength (UTS: 468 ~ 493 MPa; YS: 370 ~ 403 MPa) but a mild decrease in plasticity (EL: 39 ~ 44%; RA: 74 ~ 79%). Furthermore, both the joint strength and ductility showed a downward tendency with the increment of δf. However, the strength slightly decreased while the ductility increased with the advancement of vf. These findings would be valuably referential to the real FBW of HSLA steels with optimized microstructure and mechanical performance.

Funder

HBIS collaborative project

The University of Wollongong

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3