Advanced Process Simulation of Low Pressure Die Cast A356 Aluminum Automotive Wheels—Part II Modeling Methodology and Validation

Author:

Ou JunORCID,Wei Chunying,Cockcroft Steve,Maijer Daan,Zhu Lin,A Lateng,Li Changhai,Zhu Zhihua

Abstract

This manuscript presents an advanced modeling methodology developed to accurately simulate the temperature field evolution in the die and wheel in an industrial low-pressure die casting (LPDC) machine employed in the production of A356 automotive wheels. The model was developed in the commercial casting simulation platform ProCAST for a production die operating under production conditions. Key elements in the development of the model included the definition of the resistance to heat transfer across the die/casting interfaces and die/water-cooling channel interfaces. To examine the robustness of the modeling methodology, the model was applied to simulate production and non-production process conditions for a die cooled by a combination of water and air-cooling (Die-A), and to a second die for a different wheel geometry (Die-B) utilizing only water cooling for production conditions. In each case, the model predictions with respect to in-die and in-wheel temperature evolution were compared to industrially derived thermocouple (TC) data, and were found to be in good agreement. Once tuned to the process conditions for Die-A operating under production conditions, no further tuning of the die/casting interface resistance was applied. Additionally, the model results, in terms of the prediction of pockets of solid encapsulated liquid, were used to compare to x-ray images of wheels. This comparison indicated that the model was able to predict clusters of porosity associated with encapsulated liquid with an equivalent radius of ~27 mm.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference20 articles.

1. Gravity and low pressure die casting of aluminium alloys: A technical and economical benchmark;Bonollo;la Metall. Ital.,2005

2. Lightweighting technology development and trends in US passenger vehicles;Isenstadt;Int. Counc. Clean Transp. Work. Pap.,2016

3. Gas entrainment behavior of aluminum alloy engine crankcases during the low-pressure-die-casting process

4. Effect of Cooling Process on Porosity in the Aluminum Alloy Automotive Wheel During Low-Pressure Die Casting

5. Review on Modeling and Simulation of Continuous Casting

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3