Prediction of Leidenfrost Temperature in Spray Cooling for Continuous Casting and Heat Treatment Processes

Author:

Hnizdil Milan,Kominek JanORCID,Lee Tae-WooORCID,Raudensky MiroslavORCID,Carnogurska Maria,Chabicovsky Martin

Abstract

Spray cooling of hot steel surfaces is an inherent part of continuous casting and heat treatment. When we consider the temperature interval between room temperature and for instance 1000 °C, different boiling regimes can be observed. Spray cooling intensity rapidly changes with the surface temperature. Secondary cooling in continuous casting starts when the surface temperature is well above a thousand degrees Celsius and a film boiling regime can be observed. The cooled surface is protected from the direct impact of droplets by the vapour layer. As the surface temperature decreases, the vapour layer is less stable and for certain temperatures the vapour layer collapses, droplets reach the hot surface and heat flux suddenly jumps enormously. It is obvious that the described effect has a great effect on control of cooling. The surface temperature which indicates the sudden change in the cooling intensity is the Leidenfrost temperature. The Leidenfrost temperature in spray cooling can occur anywhere between 150 °C and over 1000 °C and depends on the character of the spray. This paper presents an experimental study and shows function for prediction of the Leidenfrost temperature based on spray parameters. Water impingement density was found to be the most important parameter. This parameter must be combined with information about droplet size and velocity to produce a good prediction of the Leidenfrost temperature.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3