THE EFFECT OF LIQUID PROPERTIES ON HEAT TRANSFER AND EVAPORATION CHARACTERISTICS OF THE LIQUID FILMS FORMED BY UNSTEADY SPRAY-WALL IMPACTS

Author:

Jowkar Saeed,Shen Xing,Morad Mohammad Reza,Zeraatkardevin Amirhooshang

Abstract

For intermittent spray-cooling purpose, it is essential to study the unsteady aspects of film evaporation and heat-transfer characteristics. In the present study, total evaporation time and surface temperature variations are investigated for four different liquid films (water, ethanol, n-octane, and n-hexane). The evaporation process is analyzed using a three-dimensional spray-wall impact with Lagrangian wall-film model. The evaporation process occurs in three stages; at the initial moments, most of the heat is used to raise the film temperature, and slight evaporation also exists. The film temperature rises until it reaches the liquid saturation point to evaporate at a constant rate. In the last stage, the evaporation rate decreases with time due to the accumulation of vapor in the bulk flow. The effect of heat flux and initial film thickness on the total evaporation time and the slope of its changes are investigated. The results show that the total evaporation time increases linearly with the initial thickness. Also, the molecular weight and saturation point of liquids are influential parameters after the enthalpy of evaporation. The surface temperature rises to a maximum value before reducing by the film evaporation. The maximum amount of the wall temperature depends on the liquid thermal conductivity and the evaporation rate. Finally, the effect of the initial value of the film temperature is investigated, and a correlation for estimating the total evaporation time is extracted.

Publisher

Begell House

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3