Abstract
Aiming to resolve the problem of redundant information concerning rolling bearing degradation characteristics and to tackle the difficulty faced by convolutional deep learning models in learning feature information in complex time series, a prediction model for remaining useful life based on multiscale fusion permutation entropy (MFPE) and a multiscale convolutional attention neural network (MACNN) is proposed. The original signal of the rolling bearing was extracted and decomposed by resonance sparse decomposition to obtain the high-resonance and low-resonance components. The multiscale permutation entropy of the low-resonance component was calculated. Moreover, the locally linear-embedding algorithm was used for dimensionality reduction to remove redundant information. The multiscale convolution module was constructed to learn the feature information at different time scales. The attention module was used to fuse the feature information and input it into the remaining useful life prediction module for evaluation. The appropriate network structure and parameter configuration were determined, and a multiscale convolutional attention neural network was designed to determine the remaining useful life prediction model. The results show that the method demonstrates effectiveness and superiority in degrading the feature information representation and improving the remaining useful life prediction accuracy compared with other models.
Funder
National Natural Science Foundation of China
Subject
General Physics and Astronomy
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献