A novel exponential degradation approach for predicting the remaining useful life of roadheader bearings

Author:

Liu Qiang,Liu SongyongORCID,Dai Qianjin,Cui Yuming,Xie Qizhi

Abstract

Abstract Based on the optimized exponential-degradation model (OEDM), a novel approach for predicting the remaining useful life(RUL) of roadheader bearings under different working conditions is proposed in this study. Specifically, the exponential process is used to construct the degradation process from a single performance characteristic under variable operating conditions, the generalized expectation maximization is employed to estimate model parameters, and the proposed degradation model is updated after new data is available. In the traditional exponential degradation method, the hyperparameters are only optimized, which leads to low calculation accuracy under severe working conditions. In the proposed method, the Bayesian algorithm and the Drift Brownian motion algorithm were respectively employed to optimize hyperparameters and stochastic parameters to ensure the high accuracy of the prediction results. In addition, degradation characteristics combined with sensory data acquired through condition monitoring were used to continuously update the RUL in the proposed degradation model. Finally, the effectiveness of the proposed model is verified by a simulation case and a case study. The results show that compared with the linear degradation model and the general exponential degradation model, the proposed OEDM performs well in practical applications and has a higher prediction accuracy. This study provides a reference for predictive maintenance of critical parts of tunneling machinery and cost reduction of tunneling.

Funder

National Natural Science Foundation of China

Natural Science Foundation

Research and Development Program of Xuzhou

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3