Abstract
With the rapid development of high-resolution synthetic aperture radar (SAR) systems, the technique that utilizes multiple two-dimensional (2-D) SAR images with different view angles to extract three-dimensional (3-D) coordinates of targets has gained wide concern in recent years. Unlike the traditional multi-channel SAR utilized for 3-D coordinate extraction, the single-channel curvilinear SAR (CLSAR) has the advantages of large variation of view angle, requiring fewer acquisition data, and lower device cost. However, due to the complex aerodynamic configuration and flight characteristics, important issues should be considered, including the mathematical model establishment, imaging geometry analysis, and high-precision extraction model design. In this paper, to address these challenges, a 3-D vector model of CLSAR was presented and the imaging geometries under different view angles were analyzed. Then, a novel 3-D coordinate extraction approach based on radargrammetry was proposed, in which the unique property of the SAR system, called cylindrical symmetry, was utilized to establish a novel extraction model. Compared with the conventional approach, the proposed one has fewer constraints on the trajectory of radar platform, requires fewer model parameters, and can obtain higher extraction accuracy without the assistance of extra ground control points (GCPs). Numerical results using simulated data demonstrated the effectiveness of the proposed approach.
Funder
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Reference43 articles.
1. Developments in Radar Imaging
2. Spotlight Synthetic Aperture Radar: Signal Processing Algorithms;Carrara,1995
3. Synthetic Aperture Radar: Systems and Signal Processing;Curlander,1991
4. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation;Cumming,2005
5. Principles of Synthetic Aperture Radar Imaging: A System Simulation Approach;Chen,2015
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献