Abstract
It is of great significance to understand the drivers of PM2.5 and fire carbon emission (FCE) and the relationship between them for the prevention, control, and policy formulation of severe PM2.5 exposure in areas where biomass burning is a major source. In this study, we considered northern Laos as the area of research, and we utilized space cluster analysis to present the spatial pattern of PM2.5 and FCE from 2003–2019. With the use of a random forest and structural equation model, we explored the relationship between PM2.5 and FCE and their drivers. The key results during the target period of the study were as follows: (1) the HH (high/high) clusters of PM2.5 concentration and FCE were very similar and distributed in the west of the study area; (2) compared with the contribution of climate variables, the contribution of FCE to PM2.5 was weak but statistically significant. The standardized coefficients were 0.5 for drought index, 0.32 for diurnal temperature range, and 0.22 for FCE; (3) climate factors are the main drivers of PM2.5 and FCE in northern Laos, among which drought and diurnal temperature range are the most influential factors. We believe that, as the heat intensifies driven by climate in tropical rainforests, this exploration and discovery can help regulators and researchers better integrate drought and diurnal temperature range into FCE and PM2.5 predictive models in order to develop effective measures to prevent and control air pollution in areas affected by biomass combustion.
Funder
This research was funded by the Natural Science Foundation of Guangdong Province, China
Subject
General Earth and Planetary Sciences
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献