Modeling the Effects of Drivers on PM2.5 in the Yangtze River Delta with Geographically Weighted Random Forest

Author:

Su Zhangwen1,Lin Lin2ORCID,Xu Zhenhui1,Chen Yimin1,Yang Liming1,Hu Honghao1,Lin Zipeng1,Wei Shujing3,Luo Sisheng3ORCID

Affiliation:

1. Zhangzhou Institute of Technology, Zhangzhou 363000, China

2. Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20740, USA

3. Guangdong Academy of Forestry, Guangzhou 510520, China

Abstract

Establishing an efficient PM2.5 prediction model and in-depth knowledge of the relationship between the predictors and PM2.5 in the model are of great significance for preventing and controlling PM2.5 pollution and policy formulation in the Yangtze River Delta (YRD) where there is serious air pollution. In this study, the spatial pattern of PM2.5 concentration in the YRD during 2003–2019 was analyzed by Hot Spot Analysis. We employed five algorithms to train, verify, and test 17 years of data in the YRD, and we explored the drivers of PM2.5 exposure. Our key results demonstrated: (1) High PM2.5 pollution in the YRD was concentrated in the western and northwestern regions and remained stable for 17 years. Compared to 2003, PM2.5 increased by 10–20% in the southeast, southwest, and western regions in 2019. The hot spot for percentage change of PM2.5 was mostly located in the southwest and southeast regions in 2019, while the interannual change showed a changeable spatial distribution pattern. (2) Geographically Weighted Random Forest (GWRF) has great advantages in predicting the presence of PM2.5 in comparison with other models. GWRF not only improves the performance of RF, but also spatializes the interpretation of variables. (3) Climate and human activities are the most important drivers of PM2.5 concentration. Drought, temperature, and temperature difference are the most critical and potentially threatening climatic factors for the increase and expansion of PM2.5 in the YRD. With the warming and drying trend worldwide, this finding can help policymakers better consider these factors for PM2.5 prediction. Moreover, the effect of interference from humans on ecosystems will increase again after COVID-19, leading to a rise in PM2.5 concentration. The strong explanatory power of comprehensive ecological indicators for the distribution of PM2.5 will be a crucial indicator worthy of consideration by decision-making departments.

Funder

Young and Middle-aged Teacher Education Research Project of Fujian Province

Special Research Project on Innovative Application of Virtual Simulation Technology in Vocational Education Teaching

Natural Science Foundation of Guangdong Province, China

Forestry Science and Technology Innovation of Guangdong Province, China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3