Extraction of Aquaculture Ponds along Coastal Region Using U2-Net Deep Learning Model from Remote Sensing Images

Author:

Zou ZhaohuiORCID,Chen ChaoORCID,Liu Zhisong,Zhang Zili,Liang Jintao,Chen Huixin,Wang Liyan

Abstract

The main challenge in extracting coastal aquaculture ponds is how to weaken the influence of the “same-spectrum foreign objects” effect and how to improve the definition of the boundary and accuracy of the extraction results of coastal aquaculture ponds. In this study, a recognition model based on the U2-Net deep learning model using remote sensing images for extracting coastal aquaculture ponds has been constructed. Firstly, image preprocessing is performed to amplify the spectral features. Second, samples are produced by visual interpretation. Third, the U2-Net deep learning model is used to train and extract aquaculture ponds along the coastal region. Finally, post-processing is performed to optimize the extraction results of the model. This method was validated in experiments in the Zhoushan Archipelago, China. The experimental results show that the average F-measure of the method in the study for the four study cases reaches 0.93, and the average precision and average recall rate are 92.21% and 93.79%, which is suitable for extraction applications in aquaculture ponds along the coastal region. This study can quickly and accurately carry out the mapping of coastal aquaculture ponds and can provide technical support for marine resource management and sustainable development.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3