Timely Plastic-Mulched Cropland Extraction Method from Complex Mixed Surfaces in Arid Regions

Author:

Fu ChenhaoORCID,Cheng Lei,Qin ShujingORCID,Tariq AqilORCID,Liu Pan,Zou Kaijie,Chang Liwei

Abstract

Plastic mulch is extensively applied in agricultural production in arid regions. It significantly influences the interactions between land and atmosphere by altering underlying surface characteristics. An accurate and timely extraction method for Plastic-Mulched Cropland (PMC) is required to understand land surface energy transfer processes, eco-hydrological cycle, the climate effect of PMC, and in the management of water resources. In this study, we proposed a Timely Plastic-mulched cropland Extraction Method (TPEM) from complex mixed surfaces with multi-source remote sensing data in the Shiyanghe River Basin (SRB), a typical representation of a complex and inhomogeneous arid region in the northwest of China. We defined TPEM in three phases; in the first phase, the spectral characteristic curves were drawn from ground object points labeled by visual interpretation with multi-source remote sensing data. In the second phase, a spectral characteristic analysis of the modified index was proposed to amplify the difference between PMC and non-PMC ground objects. Finally, the Classification and Regression Tree (CART) classifier was used to generate thresholds of indices as PMC extraction rules. The results showed that it can extract the boundary of PMC in large-scale farmland, distinguish PMC from ground objects in complex mixed surfaces, and separate the PMC from desert land that shares same spectral characteristics with PMC. The TPEM is verified to be efficient and robust, with an overall accuracy of 0.9234, quantity disagreement of 0.0541, and allocation disagreement of 0.0224, and outperformed two extensively used PMC extraction methods, especially for timely PMC extraction when satellite data only during the period that ground surface incomplete covered by plastic mulch is available. This study will provide us with an accurate and timely method to extract PMC, especially in the widely distributed complex mixed surfaces.

Funder

Postdoctoral Research Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3