Encoding Contextual Information by Interlacing Transformer and Convolution for Remote Sensing Imagery Semantic Segmentation

Author:

Li XinORCID,Xu Feng,Xia Runliang,Li TaoORCID,Chen Ziqi,Wang Xinyuan,Xu ZhennanORCID,Lyu Xin

Abstract

Contextual information plays a pivotal role in the semantic segmentation of remote sensing imagery (RSI) due to the imbalanced distributions and ubiquitous intra-class variants. The emergence of the transformer intrigues the revolution of vision tasks with its impressive scalability in establishing long-range dependencies. However, the local patterns, such as inherent structures and spatial details, are broken with the tokenization of the transformer. Therefore, the ICTNet is devised to confront the deficiencies mentioned above. Principally, ICTNet inherits the encoder–decoder architecture. First of all, Swin Transformer blocks (STBs) and convolution blocks (CBs) are deployed and interlaced, accompanied by encoded feature aggregation modules (EFAs) in the encoder stage. This design allows the network to learn the local patterns and distant dependencies and their interactions simultaneously. Moreover, multiple DUpsamplings (DUPs) followed by decoded feature aggregation modules (DFAs) form the decoder of ICTNet. Specifically, the transformation and upsampling loss are shrunken while recovering features. Together with the devised encoder and decoder, the well-rounded context is captured and contributes to the inference most. Extensive experiments are conducted on the ISPRS Vaihingen, Potsdam and DeepGlobe benchmarks. Quantitative and qualitative evaluations exhibit the competitive performance of ICTNet compared to mainstream and state-of-the-art methods. Additionally, the ablation study of DFA and DUP is implemented to validate the effects.

Funder

the National Key Research and Development Program

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3