Extracting Citrus in Southern China (Guangxi Region) Based on the Improved DeepLabV3+ Network

Author:

Li Hao12,Zhang Jia12,Wang Jia12,Feng Zhongke12ORCID,Liang Boyi12ORCID,Xiong Nina12,Zhang Junping12,Sun Xiaoting12,Li Yibing12,Lin Shuqi12

Affiliation:

1. Beijing Key Laboratory of Precision Forestry, Beijing Forestry University, Beijing 100083, China

2. Institute of GIS, RS & GPS, Beijing Forestry University, Beijing 100083, China

Abstract

China is one of the countries with the largest citrus cultivation areas, and its citrus industry has received significant attention due to its substantial economic benefits. Traditional manual forestry surveys and remote sensing image classification tasks are labor-intensive and time-consuming, resulting in low efficiency. Remote sensing technology holds great potential for obtaining spatial information on citrus orchards on a large scale. This study proposes a lightweight model for citrus plantation extraction that combines the DeepLabV3+ model with the convolutional block attention module (CBAM) attention mechanism, with a focus on the phenological growth characteristics of citrus in the Guangxi region. The objective is to address issues such as inaccurate extraction of citrus edges in high-resolution images, misclassification and omissions caused by intra-class differences, as well as the large number of network parameters and long training time found in classical semantic segmentation models. To reduce parameter count and improve training speed, the MobileNetV2 lightweight network is used as a replacement for the Xception backbone network in DeepLabV3+. Additionally, the CBAM is introduced to extract citrus features more accurately and efficiently. Moreover, in consideration of the growth characteristics of citrus, this study augments the feature input with additional channels to better capture and utilize key phenological features of citrus, thereby enhancing the accuracy of citrus recognition. The results demonstrate that the improved DeepLabV3+ model exhibits high reliability in citrus recognition and extraction, achieving an overall accuracy (OA) of 96.23%, a mean pixel accuracy (mPA) of 83.79%, and a mean intersection over union (mIoU) of 85.40%. These metrics represent an improvement of 11.16%, 14.88%, and 14.98%, respectively, compared to the original DeepLabV3+ model. Furthermore, when compared to classical semantic segmentation models, such as UNet and PSPNet, the proposed model achieves higher recognition accuracy. Additionally, the improved DeepLabV3+ model demonstrates a significant reduction in both parameters and training time. Generalization experiments conducted in Nanning, Guangxi Province, further validate the model’s strong generalization capabilities. Overall, this study emphasizes extraction accuracy, reduction in parameter count, adherence to timeliness requirements, and facilitation of rapid and accurate extraction of citrus plantation areas, presenting promising application prospects.

Funder

Beijing Forestry University

Beijing Natural Science Foundation Program

Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3