Extraction of Liana Stems Using Geometric Features from Terrestrial Laser Scanning Point Clouds

Author:

Han TaoORCID,Sánchez-Azofeifa Gerardo ArturoORCID

Abstract

Lianas are self-supporting systems that are increasing their dominance in tropical forests due to climate change. As lianas increase tree mortality and reduce tree growth, one key challenge in ecological remote sensing is the separation of a liana and its host tree using remote sensing techniques. This separation can provide essential insights into how tropical forests respond, from the point of view of ecosystem structure to climate and environmental change. Here, we propose a new machine learning method, derived from Random Forest (RF) and eXtreme Gradient Boosting (XGBoosting) algorithms, to separate lianas and trees using Terrestrial Laser Scanning (TLS) point clouds. We test our method on five tropical dry forest trees with different levels of liana infestation. First, we use a multiple radius search method to define the optimal radius of six geometric features. Second, we compare the performance of RF and XGBoosting algorithms on the classification of lianas and trees. Finally, we evaluate our model against independent data collected by other projects. Our results show that the XGBoosting algorithm achieves an overall accuracy of 0.88 (recall of 0.66), and the RF algorithm has an accuracy of 0.85 (recall of 0.56). Our results also show that the optimal radius method is as accurate as the multiple radius method, with F1 scores of 0.49 and 0.48, respectively. The RF algorithm shows the highest recall of 0.88 on the independent data. Our method provides a new flexible approach to extracting lianas from 3D point clouds, facilitating TLS to support new studies aimed to evaluate the impact of lianas on tree and forest structures using point clouds.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3