Abstract
Wind energy has been recognized as the most promising and economical renewable energy source, attracting increasing attention in recent years. However, considering the variability and uncertainty of wind energy, accurate forecasting is crucial to propel high levels of wind energy penetration within electricity markets. In this paper, a comparative framework is proposed where a suite of long short-term memory (LSTM) recurrent neural networks (RNN) models, inclusive of standard, bidirectional, stacked, convolutional, and autoencoder architectures, are implemented to address the existing gaps and limitations of reported wind power forecasting methodologies. These integrated networks are implemented through an iterative process of varying hyperparameters to better assess their effect, and the overall performance of each architecture, when tackling one-hour to three-hours ahead wind power forecasting. The corresponding validation is carried out through hourly wind power data from the Spanish electricity market, collected between 2014 and 2020. The proposed comparative error analysis shows that, overall, the models tend to showcase low error variability and better performance when the networks are able to learn in weekly sequences. The model with the best performance in forecasting one-hour ahead wind power is the stacked LSTM, implemented with weekly learning input sequences, with an average MAPE improvement of roughly 6, 7, and 49%, when compared to standard, bidirectional, and convolutional LSTM models, respectively. In the case of two to three-hours ahead forecasting, the model with the best overall performance is the bidirectional LSTM implemented with weekly learning input sequences, showcasing an average improved MAPE performance from 2 to 23% when compared to the other LSTM architectures implemented.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference58 articles.
1. Wind Power Generation and Wind Turbine Design;Tong,2010
2. Renewables 2020 Global Status Reporthttps://ren21.net/gsr-2020/
3. Review and outlook on the international renewable energy development
4. A novel hybrid model for short-term wind power forecasting
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献