Smart and sustainable scheduling of charging events for electric buses

Author:

Jarvis Padraigh,Climent Laura,Arbelaez Alejandro

Abstract

AbstractThis paper presents a framework for the efficient management of renewable energies to charge a fleet of electric buses (eBuses). Our framework starts with the prediction of clean energy time windows, i.e., periods of time when the production of clean energy exceeds the demand of the country. Then, the optimization phase schedules charging events to reduce the use of non-clean energy to recharge eBuses while passengers are embarking or disembarking. The proposed framework is capable of overcoming the unstable and chaotic nature of wind power generation to operate the fleet without perturbing the quality of service. Our extensive empirical validation with real instances from Ireland suggests that our solutions can significantly reduce non-clean energy consumed on large data sets.

Funder

Sustainable Energy Authority of Ireland

Universidad Autónoma de Madrid

Publisher

Springer Science and Business Media LLC

Subject

Discrete Mathematics and Combinatorics,Statistics and Probability,Management Science and Operations Research,Information Systems and Management,Modeling and Simulation

Reference46 articles.

1. Arbelaez A, Climent L (2020) Transition to eBuses with minimal timetable disruptions. In: Thirteenth annual symposium on combinatorial search

2. Arbelaez A, Hamadi Y, Sebag M (2012) Continuous search in constraint programming. In: Autonomous search. Springer, Berlin, pp 219–243

3. Balafrej A, Bessiere C, Paparrizou A (2015) Multi-armed bandits for adaptive constraint propagation. In: IJCAI Buenos Aires, Argentina, July 25–31, 2015. AAAI Press, pp 290–296

4. Bengio Y, Lodi A, Prouvost A (2021) Machine learning for combinatorial optimization: a methodological tour d’horizon. Eur J Oper Res 290(2):405–421

5. Box GE, Jenkins GM, Reinsel GC, Ljung GM (2015) Time series analysis: forecasting and control. Wiley, New York

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3