Abstract
The thermally activated building system (TABS) can reduce the peak load by integrating with the ground heat exchangers. When integrated, the cost of groundwork and stability of the ground temperature would counteract because the weather conditions would influence the ground temperature in shallow depth. However, previous studies on TABS assumed constant ground temperatures such as average outdoor air temperature. In this study, ground temperatures in different depths are simulated for their detailed investigations, and simulated results of ground temperature were applied to building energy simulations for observing the load-handled ratio (LHR), representing the peak load reduction by TABS evaluated in various weather conditions. Simulation results of ground temperatures from 1 m to 39 m depths show that the temperature stabilized at 2 m to 11 m depths depending on the characteristics of the outdoor air temperature. LHR increased as the ground depth increased because the ground temperature at shallow depths increased during peak hours. Ground depths of 8 m were found ideal for maintaining consistent LHR for all weather conditions. Detailed observation of ground temperature and its effect on LHR in various weather conditions can help system engineers design and operate the TABS with the ground system.
Funder
National Research Foundation of Korea
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献