Abstract
Among the alternatives for improving the thermal comfort conditions inside buildings are the thermally activated building systems (TABS). They are embedded in different building components to improve the indoor air temperature. In this work, a review and analysis of the state of the art of TABS was carried out to identify their potential to improve thermal comfort conditions and provide energy savings. Furthermore, this study presents the gaps identified in the literature so that researchers can develop future studies on TABS. The articles found were classified and analyzed in four sections, considering their implementation in roofs, walls, floors, and the whole envelope. In addition, aspects related to the configuration of the TABS and the fluid (speed, temperature, and mass flow rate) were analyzed. It was found that when TABS are implemented in roofs, walls, and floors, a reduction in the indoor temperature of a building of up to 14.4 °C can be obtained. Within the limitations of the TABS, the complexity and costs of their implementation compared to the use of air conditioning systems are reported. However, the TABS can provide energy savings of up to 50%.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献