Object-Based Wetland Vegetation Classification Using Multi-Feature Selection of Unoccupied Aerial Vehicle RGB Imagery

Author:

Zhou Rui,Yang Chao,Li Enhua,Cai Xiaobin,Yang Jiao,Xia Ying

Abstract

Wetland vegetation is an important component of wetland ecosystems and plays a crucial role in the ecological functions of wetland environments. Accurate distribution mapping and dynamic change monitoring of vegetation are essential for wetland conservation and restoration. The development of unoccupied aerial vehicles (UAVs) provides an efficient and economic platform for wetland vegetation classification. In this study, we evaluated the feasibility of RGB imagery obtained from the DJI Mavic Pro for wetland vegetation classification at the species level, with a specific application to Honghu, which is listed as a wetland of international importance. A total of ten object-based image analysis (OBIA) scenarios were designed to assess the contribution of five machine learning algorithms to the classification accuracy, including Bayes, K-nearest neighbor (KNN), support vector machine (SVM), decision tree (DT), and random forest (RF), multi-feature combinations and feature selection implemented by the recursive feature elimination algorithm (RFE). The overall accuracy and kappa coefficient were compared to determine the optimal classification method. The main results are as follows: (1) RF showed the best performance among the five machine learning algorithms, with an overall accuracy of 89.76% and kappa coefficient of 0.88 when using 53 features (including spectral features (RGB bands), height information, vegetation indices, texture features, and geometric features) for wetland vegetation classification. (2) The RF model constructed by only spectral features showed poor classification results, with an overall accuracy of 73.66% and kappa coefficient of 0.70. By adding height information, VIs, texture features, and geometric features to construct the RF model layer by layer, the overall accuracy was improved by 8.78%, 3.41%, 2.93%, and 0.98%, respectively, demonstrating the importance of multi-feature combinations. (3) The contribution of different types of features to the RF model was not equal, and the height information was the most important for wetland vegetation classification, followed by the vegetation indices. (4) The RFE algorithm effectively reduced the number of original features from 53 to 36, generating an optimal feature subset for wetland vegetation classification. The RF based on the feature selection result of RFE (RF-RFE) had the best performance in ten scenarios, and provided an overall accuracy of 90.73%, which was 0.97% higher than the RF without feature selection. The results illustrate that the combination of UAV-based RGB imagery and the OBIA approach provides a straightforward, yet powerful, approach for high-precision wetland vegetation classification at the species level, in spite of limited spectral information. Compared with satellite data or UAVs equipped with other types of sensors, UAVs with RGB cameras are more cost efficient and convenient for wetland vegetation monitoring and mapping.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3