A Vehicle-Borne Mobile Mapping System Based Framework for Semantic Segmentation and Modeling on Overhead Catenary System Using Deep Learning

Author:

Xu LeiORCID,Zheng Shunyi,Na JiamingORCID,Yang Yuanwei,Mu Chunlin,Shi Debin

Abstract

Overhead catenary system (OCS) automatic detection is of important significance for the safe operation and maintenance of electrified railways. The vehicle-borne mobile mapping system (VMMS) may significantly improve the data acquisition. This paper proposes a VMMS-based framework to realize the automatic detection and modelling of OCS. The proposed framework performed semantic segmentation, model reconstruction and geometric parameters detection based on LiDAR point cloud using VMMS. Firstly, an enhanced VMMS is designed for accurate data generation. Secondly, an automatic searching method based on a two-level stereo frame is designed to filter the irrelevant non-OCS point cloud. Then, a deep learning network based on multi-scale feature fusion and an attention mechanism (MFF_A) is trained for semantic segmentation on a catenary facility. Finally, the 3D modelling is performed based on the OCS segmentation result, and geometric parameters are then extracted. The experimental case study was conducted on a 100 km high-speed railway in Guangxi, China. The experimental results show that the proposed framework has a better accuracy of 96.37%, outperforming other state-of-art methods for segmentation. Compared with traditional manual laser measurement, the proposed framework can achieve a trustable accuracy within 10 mm for OCS geometric parameter detection.

Funder

Major Project of China Railway Design Corporation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference37 articles.

1. Temporal characteristics and reliability analysis of railway transportation networks

2. An Improved Multi-Objective Quantum-Behaved Particle Swarm Optimization for Railway Freight Transportation Routing Design

3. Sustainable Development of Transportation in China,2020

4. A survey of the application of machine vision in rail transit system inspection;Xiukun;Control. Decis.,2021

5. High Speed Electrified Railway Catenary;Wanju,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3