Terrain-Net: A Highly-Efficient, Parameter-Free, and Easy-to-Use Deep Neural Network for Ground Filtering of UAV LiDAR Data in Forested Environments

Author:

Li Bowen,Lu HaoORCID,Wang Han,Qi JianboORCID,Yang GangORCID,Pang YongORCID,Dong Haolin,Lian YiningORCID

Abstract

In recent years, a rise in interest in using Unmanned Aerial Vehicles (UAV) with LiDAR (Light Detection and Ranging) to capture the 3D structure of forests for forestry and ecosystem monitoring applications has been witnessed. Since the terrain is an essential basis for the vertical structure modeling of a forest, the point cloud filtering delivering a highly accurate Digital Terrain Model (DTM) contributes significantly to forest studies. Conventional point cloud filtering algorithms require users to select suitable parameters according to the knowledge of the algorithm and the characteristics of scanned scenes, which are normally empirical and time-consuming. Deep learning offers a novel method in classifying and segmenting LiDAR point cloud, while there are only few studies reported on utilizing deep learning to filter non-ground LiDAR points of forested environments. In this study, we proposed an end-to-end and highly-efficient network named Terrain-net which combines the 3D point convolution operator and self-attention mechanism to capture local and global features for UAV point cloud ground filtering. The network was trained with over 15 million labeled points of 70 forest sites and was evaluated at 17 sites covering various forested environments. Terrain-net was compared with four classical filtering algorithms and one of the most well-recognized point convolution-based deep learning methods (KP-FCNN). Results indicated that Terrain-net achieved the best performance in respect of the Kappa coefficient (0.93), MIoU (0.933) and overall accuracy (98.0%). Terrain-net also performed well in transferring to an additional third-party open dataset for ground filtering in large-scale scenes and other vegetated environments. No parameters need to be tuned in transferring predictions. Terrain-net will hopefully be widely applied as a new highly-efficient, parameter-free, and easy-to-use tool for LiDAR data ground filtering in varying forest environments.

Funder

National Key Research and Development Program of China

the National Natural Science Foundation of China

the Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3