Abstract
In recent years, a rise in interest in using Unmanned Aerial Vehicles (UAV) with LiDAR (Light Detection and Ranging) to capture the 3D structure of forests for forestry and ecosystem monitoring applications has been witnessed. Since the terrain is an essential basis for the vertical structure modeling of a forest, the point cloud filtering delivering a highly accurate Digital Terrain Model (DTM) contributes significantly to forest studies. Conventional point cloud filtering algorithms require users to select suitable parameters according to the knowledge of the algorithm and the characteristics of scanned scenes, which are normally empirical and time-consuming. Deep learning offers a novel method in classifying and segmenting LiDAR point cloud, while there are only few studies reported on utilizing deep learning to filter non-ground LiDAR points of forested environments. In this study, we proposed an end-to-end and highly-efficient network named Terrain-net which combines the 3D point convolution operator and self-attention mechanism to capture local and global features for UAV point cloud ground filtering. The network was trained with over 15 million labeled points of 70 forest sites and was evaluated at 17 sites covering various forested environments. Terrain-net was compared with four classical filtering algorithms and one of the most well-recognized point convolution-based deep learning methods (KP-FCNN). Results indicated that Terrain-net achieved the best performance in respect of the Kappa coefficient (0.93), MIoU (0.933) and overall accuracy (98.0%). Terrain-net also performed well in transferring to an additional third-party open dataset for ground filtering in large-scale scenes and other vegetated environments. No parameters need to be tuned in transferring predictions. Terrain-net will hopefully be widely applied as a new highly-efficient, parameter-free, and easy-to-use tool for LiDAR data ground filtering in varying forest environments.
Funder
National Key Research and Development Program of China
the National Natural Science Foundation of China
the Fundamental Research Funds for the Central Universities
Subject
General Earth and Planetary Sciences
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献