Abstract
Cloud contamination is a serious obstacle for the application of Landsat data. To popularize the applications of Landsat data, each Landsat image includes the corresponding Quality Assessment (QA) band, in which cloud and cloud shadow pixels have been flagged. However, previous studies suggested that Landsat QA band still needs to be modified to fulfill the requirement of Landsat data applications. In this study, we developed a Supplementary Module to improve the original QA band (called QA_SM). On one hand, QA_SM extracts spectral and geometrical features in the target Landsat cloud image from the original QA band. On the other, QA_SM incorporates the temporal change characteristics of clouds and cloud shadows between the target and reference images. We tested the new method at four local sites with different land covers and the Landsat-8 cloud cover validation dataset (“L8_Biome”). The experimental results show that QA_SM performs better than the original QA band and the multi-temporal method ATSA (Automatic Time-Series Analyses). QA_SM decreases omission errors of clouds and shadows in the original QA band effectively but meanwhile does not increase commission errors. Besides, the better performance of QA_SM is less affected by the selections of reference images because QA_SM considers the temporal change of land surface reflectance that is not caused by cloud contamination. By further designing a quantitative assessment experiment, we found that the QA band generated by QA_SM improves cloud-removal performance on Landsat cloud images, suggesting the benefits of the new method to advance the applications of Landsat data.
Subject
General Earth and Planetary Sciences
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献