I-Shaped Metamaterial Using SRR for Multi-Band Wireless Communication

Author:

Ajewole Bukola,Kumar PradeepORCID,Afullo Thomas

Abstract

A novel I-shaped metamaterial (ISMeTM) using split-ring resonator (SRR) for multi-band wireless communication is presented in this paper. The proposed ISMeTM unit cell structure is designed using the three-square split-ring resonators (SSRRs) and I-shaped copper strip at the center. The size of the proposed ISMeTM is 10 × 10 × 1.6 mm3 while utilizing the FR-4 dielectric substrate material. The analysis of various array arrangements, variation in the ring gap, variation in strip length, and the variation in strip width is performed to achieve the optimum results for multi-band operation. The effective permittivity, permeability, and refractive index of the unit cell have been analyzed. The design and simulation of the ISMeTM unit cell and arrays are performed using the Computer Simulation Technology (CST) Studio Suite and MATLAB. The equivalent circuit of the ISMeTM is designed using the Advanced Design System (ADS) software. The split ring’s inner loop’s gap functions as a capacitor, while the metallic ring itself functions as an inductor. Electric resonance is created by the interaction between the split ring and the electric field. The interaction of magnetic fields with metallic loops during EM propagation in the structure causes the magnetic resonance. The variation in dimensions of the structure causes the variation in the inductance and capacitance, which causes the variation in resonant frequency. The proposed design is optimized after several parametric analyses. A comprehensive analysis of 1 × 2, 2 × 2, and 2 × 4 array is also investigated. The results confirm the multi-band operation of the proposed ISMeTM. The proposed ISMeTM is suitable for the multi-band C/X/Ku-band microwave applications.

Funder

Eskom

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3