Development of Compact Bandpass Filter Using Symmetrical Metamaterial Structures for GPS, ISM, Wi-MAX, and WLAN Applications

Author:

Vineetha Kottapadikal Vinodan1,Madhav Boddapati Taraka Phani1ORCID,Kumar Munuswamy Siva1,Das Sudipta2ORCID,Islam Tanvir3ORCID,Alathbah Moath4ORCID

Affiliation:

1. Antennas and Liquid Crystals Research Center, Department of ECE, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522303, Andhra Pradesh, India

2. Department of Electronics and Communication Engineering, IMPS College of Engineering and Technology, Malda 732103, West Bengal, India

3. Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77204, USA

4. Department of Electrical Engineering, College of Engineering, King Saud University, Riyadh 11451, Saudi Arabia

Abstract

This article describes the development of a compact microstrip bandpass filter (BPF) for multiple wireless communication utilizations. The proposed bandpass filter consists of metamaterial unit cells that are symmetrical in shape. The design process involves the placement of four symmetrical split-ring resonators (SRRs) on the top plane of the BPF. It exhibits improved filter characteristics through the implementation of these SRRs. The filter was modeled and fabricated and its performance was evaluated using a Vector Network Analyzer. The designed bandpass filter shows a 5 GHz bandwidth covering the frequency band spanning from 1 to 5.2 GHz, with a quality factor value of 1.85 across 1.9 GHz, 3.3 across 3.3 GHz and 5.1 across 5.1 GHz. The metamaterial analysis was carried out using ANSYS ELECTRONIC DESKTOP. The proposed filter measures 20 × 18 × 1.6 mm3, which is significantly smaller than current filters. The designed bandpass filter occupies 50% of the space of a conventional filter. The designed bandpass filter exhibits a distributed surface current of 84 A/m, and 94 A/m across the wide- and narrow-band operating frequency. The simulated and measured results indicate that the suggested metamaterial filter is well-suited for multiband wireless applications like GPS (1.57 GHz), WLAN (2.4, 3.6, and 5.2 GHz), Wi-MAX (2.3, 2.5, and 3.5 GHz), and ISM (2.5 GHz).

Funder

King Saud University, Riyadh, Saudi Arabia

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3