Research Progress of Anode-Free Lithium Metal Batteries

Author:

Zhang JianORCID,Khan Abrar,Liu Xiaoyuan,Lei Yuban,Du Shurong,Lv Le,Zhao HaileiORCID,Luo DaweiORCID

Abstract

Lithium-metal batteries (LMBs) are regarded as the most promising candidate for practical applications in portable electronic devices and electric vehicles because of their high capacity and energy density. However, the uncontrollable growth of lithium dendrite reduces its cycling ability and even causes a severe safety concern, which impedes the development of the technology. Although great efforts have been devoted to solving the lithium dendrite issue in recent years, the contradiction between the high cost of thin Li foil and the severe safety hazard of excess Li still exists. This is precisely the factor that inspired the development of anode-free lithium-metal batteries (AFLMBs). Compared to lithium-metal batteries, AFLMBs with a zero-excess Li anode possess an incredible, conceivable, and specific energy. Additionally, because the use of metal lithium is limited, the battery manufacturing will be safer and simpler, leading to a significant decrease in cost. However, comprehensive reviews on anode-free batteries are rare. Therefore, in this review, we aim to explain the essential development factors influencing the cycle life, energy density, cost, and working mechanism of anode-free batteries. We summarize different strategies to improve the cycling stability of AFLMBs, and we discuss the application of anode-free electrodes in other electrochemical energy storage systems. Moreover, it is believed that the combination of modification techniques, including electrolytes and current collectors, and the application protocols will be the most important solution for future anode-free batteries.

Funder

Special Funds for the Science and Technology Innovation Project of Guangdong Provincial De-partment of Education

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3