Harnessing Liquid Metals with In Situ Polymerized Electrolyte for Anode‐Free Lithium Metal Batteries

Author:

Nguyen Minh Hai1,Kim Dohun1,Kim Byung‐Kook2,Park Sangbaek1ORCID

Affiliation:

1. Department of Materials Science and Engineering Chungnam National University Daejeon 34134 Republic of Korea

2. Energy Materials Research Center Korea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea

Abstract

AbstractTo enhance safety and energy density in conventional Li‐ion batteries, anode‐free or zero‐lithium configurations using only a current collector (CC) in the anode have emerged. However, challenges including rapid Li dendrite growth, low Coulombic efficiency, safety concerns, and thickness issues hinder the practical use of anode‐free batteries (AFBs) with liquid electrolytes (LEs) or solid electrolytes (SEs). Herein, potential AFBs using an anode current collector coated with a liquid metal (LM)@C nanocomposite with an in situ polymerized electrolyte (PE) are reported. Interestingly, LM nanoparticles added to the composite layer on CC play a crucial role in promoting uniform Li plating/stripping behavior through a self‐healing mechanism, along with reversible liquid–solid–liquid phase transitions caused by alloying and de‐alloying of Li and LMs. Furthermore, incorporating in situ polymerized electrolytes stabilizes LMs by preventing the agglomeration of LM nanoparticles, resulting in significantly improved cell performance compared to other conventional LEs. A systematical model study with ex situ analysis unveils the synergetic effects between LMs and PE, along with elucidating the mechanism of in situ polymerization and Li‐LMs reactions. The investigation contributes valuable insights for future studies on practical applications of AFBs using polymer electrolytes and composite interlayers.

Funder

Korea Forestry Promotion Institute

Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry

Chungnam National University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3