Abstract
In this manuscript, we report an extensive study of the physico-chemical properties of different samples of O3-NaMnO2, synthesized by sol–gel and solid state methods. In order to successfully synthesize the materials by sol–gel methods a rigorous control of the synthesis condition has been optimized. The electrochemical performances of the materials as positive electrodes in aprotic sodium-ion batteries have been demonstrated. The effects of different synthesis methods on both structural and electrochemical features of O3-NaMnO2 have been studied to shed light on the interplay between structure and performance. Noticeably, we obtained a material capable of attaining a reversible capacity exceeding 180 mAhg−1 at 10 mAg−1 with a capacity retention >70% after 20 cycles. The capacity fading mechanism and the structural evolution of O3-NaMnO2 upon cycling have been extensively studied by performing post-mortem analysis using XRD and Raman spectroscopy. Apparently, the loss of reversible capacity upon cycling originates from irreversible structural degradations.
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献