Author:
Liu Wei,Liang Feng,Zhao Degang,Yang Jing,Chen Ping,Liu Zongshun
Abstract
The optical properties of InGaN/GaN violet light-emitting multiple quantum wells with different thicknesses of GaN quantum barriers are investigated experimentally. When the barrier thickness decreases from 20 to 10 nm, the photoluminescence intensity at room temperature increases, which can be attributed to the reduced polarization field in the thin-barrier sample. However, with a further reduction in the thickness to 5 nm, the sample’s luminescence intensity decreases significantly. It is found that the strong nonradiative loss process induced by the deteriorated crystal quality and the quantum-tunneling-assisted leakage of carriers may jointly contribute to the enhanced nonradiative loss of photogenerated electrons and holes, leading to a significant reduction in photoluminescence intensity of the sample with nanoscale ultrathin GaN quantum barriers.
Funder
National Key R&D Program of China
National Natural Science Foundation of China
Beijing Nova Program
Youth Innovation Promotion Association of Chinese Academy of Sciences
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献