Impact of Anode Thickness on Breakdown Mechanisms in Vertical GaN PiN Diodes with Planar Edge Termination

Author:

Ebrish Mona A.ORCID,Porter Matthew A.,Jacobs Alan G.,Gallagher James C.,Kaplar Robert J.,Gunning Brendan P.,Hobart Karl D.ORCID,Anderson Travis J.

Abstract

GaN vertical PiN diodes with different anode thicknesses were fabricated on three native GaN wafers with the same p-layer doping concentrations, and planar hybrid edge termination. The breakdown behavior in terms of the breakdown voltage and the electroluminescence were studied as functions of the anode thickness. A repeatable avalanche breakdown and highest breakdown voltage were measured with the thinnest anode of 300 nm and with the thinnest edge termination region. This indicates the efficacy of the nitrogen-implanted hybrid edge termination design that comprises of junction termination and guard rings hybrid design. As the anode thickness increases, the edge termination thickness increases, and the devices exhibit lower breakdown voltages and less robust breakdown characteristics, often destructive. From this study, we also conclude that a very high p-layer doping of 2 × 1019 cm−3 is not s practical doping level, because it is too sensitive to the edge termination thickness.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3